
UNIT IV 

In Python programming, Operators in general are used to perform operations on values and 

variables. These are standard symbols used for the purpose of logical and arithmetic operations. 

In this article, we will look into different types of Python operators.  

 OPERATORS: These are the special symbols. Eg- + , * , /, etc. 

 OPERAND: It is the value on which the operator is applied. 

Types of Operators in Python 

1. Arithmetic Operators 

2. Comparison Operators 

3. Logical Operators 

4. Bitwise Operators 

5. Assignment Operators 

6. Identity Operators and Membership Operators 

Arithmetic Operators in Python 

Python Arithmetic operators are used to perform basic mathematical operations like addition, 

subtraction, multiplication, and division. 

In Python 3.x the result of division is a floating-point while in Python 2.x division of 2 integers 

was an integer. To obtain an integer result in Python 3.x floored (// integer) is used. 

Operator Description Syntax 

+ Addition: adds two operands x + y 

– Subtraction: subtracts two x – y 

https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-arithmetic-operators/
https://www.geeksforgeeks.org/relational-operators-in-python/
https://www.geeksforgeeks.org/python-logical-operators-with-examples-improvement-needed/
https://www.geeksforgeeks.org/python-bitwise-operators/
https://www.geeksforgeeks.org/assignment-operators-in-python/
https://www.geeksforgeeks.org/python-membership-identity-operators-not-not/
https://www.geeksforgeeks.org/python-arithmetic-operators/


Operator Description Syntax 

operands 

* 
Multiplication: multiplies two 

operands 
x * y 

/ 
Division (float): divides the first 

operand by the second 
x / y 

// 
Division (floor): divides the 

first operand by the second 
x // y 

% 

Modulus: returns the remainder 

when the first operand is 

divided by the second 

x % y 

** 
Power: Returns first raised to 

power second 
x ** y 

Example of Arithmetic Operators in Python 

Division Operators 

Division Operators allow you to divide two numbers and return a quotient, i.e., the first number 

or number at the left is divided by the second number or number at the right and returns the 

quotient.  

Comparison Operators in Python 

In Python Comparison of Relational operators compares the values. It either returns True or 

False according to the condition. 

Operator Description Syntax 

> 
Greater than: True if the left 

operand is greater than the right 
x > y 

< Less than: True if the left x < y 

https://www.geeksforgeeks.org/python-object-comparison-is-vs/
https://www.geeksforgeeks.org/python-object-comparison-is-vs/
https://www.geeksforgeeks.org/relational-operators-in-python/


Operator Description Syntax 

operand is less than the right 

== 
Equal to: True if both operands 

are equal 
x == y 

!= 
Not equal to – True if operands 

are not equal 
x != y 

>= 

Greater than or equal to True if 

the left operand is greater than 

or equal to the right 

x >= y 

<= 

Less than or equal to True if the 

left operand is less than or 

equal to the right 

x <= y 

Logical Operators in Python 

Python Logical operators perform Logical AND, Logical OR, and Logical NOT operations. It 

is used to combine conditional statements. 

Operator Description Syntax 

and 
Logical AND: True if both the 

operands are true 
x and y 

or 
Logical OR: True if either of 

the operands is true  
x or y 

not 
Logical NOT: True if the 

operand is false  
not x 

Bitwise Operators in Python 

Python Bitwise operators act on bits and perform bit-by-bit operations. These are used to operate 

on binary numbers. 

https://www.geeksforgeeks.org/python-logical-operators-with-examples-improvement-needed/
https://www.geeksforgeeks.org/python-bitwise-operators/


Operator Description Syntax 

& Bitwise AND x & y 

| Bitwise OR x | y 

~ Bitwise NOT ~x 

^ Bitwise XOR x ^ y 

>> Bitwise right shift x>> 

<< Bitwise left shift x<< 

Assignment Operators in Python 

Python Assignment operators are used to assign values to the variables. 

Operator Description Syntax 

= 

Assign the value of the right 

side of the expression to the left 

side operand  

x = y + z 

+= 

Add AND: Add right-side 

operand with left-side operand 

and then assign to left operand 

a+=b     a=a+b 

-= 

Subtract AND: Subtract right 

operand from left operand and 

then assign to left operand 

a-=b     a=a-b 

*= 

Multiply AND: Multiply right 

operand with left operand and 

then assign to left operand 

a*=b     a=a*b 

/= 

Divide AND: Divide left 

operand with right operand and 

then assign to left operand 

a/=b     a=a/b 

%= Modulus AND: Takes modulus a%=b     a=a%b 

https://www.geeksforgeeks.org/assignment-operators-in-python/


Operator Description Syntax 

using left and right operands 

and assign the result to left 

operand 

//= 

Divide(floor) AND: Divide left 

operand with right operand and 

then assign the value(floor) to 

left operand 

a//=b     a=a//b 

**= 

Exponent AND: Calculate 

exponent(raise power) value 

using operands and assign value 

to left operand 

a**=b     a=a**b 

&= 

Performs Bitwise AND on 

operands and assign value to 

left operand 

a&=b     a=a&b 

|= 

Performs Bitwise OR on 

operands and assign value to 

left operand 

a|=b     a=a|b 

^= 

Performs Bitwise xOR on 

operands and assign value to 

left operand 

a^=b     a=a^b 

>>= 

Performs Bitwise right shift on 

operands and assign value to 

left operand 

a>>=b     a=a>>b 

<<= 

Performs Bitwise left shift on 

operands and assign value to 

left operand 

a <<= b     a= a << b 

Identity Operators in Python 



In Python, is and is not are the identity operators both are used to check if two values are located 

on the same part of the memory. Two variables that are equal do not imply that they are 

identical.  

is          True if the operands are identical  

is not      True if the operands are not identical  

 

Python Loops 

Python has two primitive loop commands: 

 while loops 

 for loops 

The while Loop 

With the while loop we can execute a set of statements as long as a condition is true. 

The while loop requires relevant variables to be ready, in this example we need to define an 

indexing variable, i, which we set to 1. 

 

The break Statement 

With the break statement we can stop the loop even if the while condition is true: 

Example 

Exit the loop when i is 3: 

i = 1 

while i < 6: 

  print(i) 

https://www.geeksforgeeks.org/python-membership-identity-operators-not-not/


  if i == 3: 

    break 

  i += 1  

The continue Statement 

With the continue statement we can stop the current iteration, and continue with the next: 

Example 

Continue to the next iteration if i is 3: 

i = 0 

while i < 6: 

  i += 1  

  if i == 3: 

    continue 

  print(i) 

The else Statement 

With the else statement we can run a block of code once when the condition no longer is true: 

Example 

Print a message once the condition is false: 

i = 1 

while i < 6: 

  print(i) 

  i += 1 

else: 

  print("i is no longer less than 6") 

Exercise: 



Print i as long as i is less than 6. 

i = 1 

 i < 6  

  print(i) 

  i += 1 

 


	Types of Operators in Python
	Arithmetic Operators in Python
	Example of Arithmetic Operators in Python
	Division Operators

	Comparison Operators in Python
	Logical Operators in Python
	Bitwise Operators in Python
	Assignment Operators in Python
	Identity Operators in Python
	Python Loops
	The while Loop
	The break Statement
	Example

	The continue Statement
	Example

	The else Statement
	Example

	Exercise:

